skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Jonathan M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Classical and quantum technologies have traditionally been viewed as orthogonal, with classical systems being deterministic and quantum systems inherently probabilistic. This distinction hinders the development of a scalable quantum internet even as the global internet continues expanding. We report a classical-decisive quantum internet architecture in which the integration of quantum information into advanced photonic technologies enables efficient entanglement distribution over a commercially deployed fiber network. On-chip precise synchronization between classical headers and quantum payloads enables dynamic routing and networking of high-fidelity entanglement guided by classical light. The quantum states are preserved through real-time error mitigation, relying solely on classical signal readout without disturbing quantum information. These classical-decisive features demonstrate a practical path to a scalable quantum internet using existing network infrastructure and operating systems. 
    more » « less
    Free, publicly-accessible full text available August 28, 2026
  2. null (Ed.)
  3. By prioritizing simplicity and portability, least-privilege engineering has been an afterthought in OS design, resulting in monolithic kernels where any exploit leads to total compromise. μSCOPE (“microscope”) addresses this problem by automatically identifying opportunities for least-privilege separation. μSCOPE replaces expert-driven, semi-automated analysis with a general methodology for exploring a continuum of security vs. performance design points by adopting a quantitative and systematic approach to privilege analysis. We apply the μSCOPE methodology to the Linux kernel by (1) instrumenting the entire kernel to gain comprehensive, fine-grained memory access and call activity; (2) mapping these accesses to semantic information; and (3) conducting separability analysis on the kernel using both quantitative privilege and overhead metrics. We discover opportunities for orders of magnitude privilege reduction while predicting relatively low overheads—at 15% mediation overhead, overprivilege in Linux can be reduced up to 99.8%—suggesting fine-grained privilege separation is feasible and laying the groundwork for accelerating real privilege separation. 
    more » « less
  4. null (Ed.)
  5. We revisit the gap between what distributed systems need from the transport layer and what protocols in wide deployment provide. Such a gap complicates the implementation of distributed systems and impacts their performance. We introduce Tunable Multicast Communication (TMC), an abstraction that allows developers to easily specialize communication channels in distributed systems. TMC is presented as a deployable and extensible user-space library that exposes high-level tunable guarantees. TMC has the potential of improving the performance of distributed applications with minimal-to-zero development and deployment effort. 
    more » « less
  6. Two complementary approaches to mapping network boundaries from traceroute paths recently emerged [27,31]. Both approaches apply heuristics to inform inferences extracted from traceroute measurement campaigns. bdrmap [27] used targeted traceroutes from a specific network, alias resolution probing techniques, and AS relationship inferences, to infer the boundaries of that specific network and the other networks attached at each boundary. MAPIT [31] tackled the ambitious challenge of inferring all AS-level network boundaries in a massive archived collection of traceroutes launched from many different networks. Both were substantial contributions to the state-of-the-art, and inspired a collaboration to explore the potential to combine the approaches. We present and evaluate bdrmapIT, the result of that exploration, which yielded a more complete, accurate, and general solution to this persistent and central challenge of Internet topology research. bdrmapIT achieves 91.8%-98.8% accuracy when mapping AS boundaries in two Internet-wide traceroute datasets, vastly improving on MAP-IT's coverage without sacrificing bdrmap's ability to map a single network. The bdrmapIT source code is available at https://git.io/fAsI0. 
    more » « less